您的位置:群走網(wǎng)>教學(xué)資源>說課稿>《圓的標(biāo)準(zhǔn)方程》說課稿
        《圓的標(biāo)準(zhǔn)方程》說課稿
        更新時間:2024-05-16 10:04:02
        • 相關(guān)推薦
        [薦]《圓的標(biāo)準(zhǔn)方程》說課稿

          作為一名教師,時常需要用到說課稿,說課稿有助于順利而有效地開展教學(xué)活動。那么應(yīng)當(dāng)如何寫說課稿呢?以下是小編幫大家整理的《圓的標(biāo)準(zhǔn)方程》說課稿,歡迎大家分享。

        《圓的標(biāo)準(zhǔn)方程》說課稿1

          我說課的題目是上海教育出版社中職教材試用本數(shù)學(xué)第二冊,第四章第一節(jié)《圓的標(biāo)準(zhǔn)方程》,說課內(nèi)容分成教材分析、教法分析、學(xué)法分析、教學(xué)過程四個部分。

          一、教材分析

          1、教材的地位:解析幾何是通過建立直角坐標(biāo)系把幾何問題用代數(shù)方法解決的學(xué)科。圓是同學(xué)們已經(jīng)熟悉的幾何圖形,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。圓也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。推導(dǎo)圓的標(biāo)準(zhǔn)方程需要在直線的學(xué)習(xí)基礎(chǔ)上進(jìn)行,基本模式和理論基礎(chǔ)從直線引入。同時和今后的直線與圓等課程有重要聯(lián)系。因此本節(jié)課具有承前啟后的作用,是本章的關(guān)鍵內(nèi)容。在本單元的地位和作用,結(jié)合職一年級學(xué)生的特點,我從以下三個角度制定教學(xué)目標(biāo):

          2.教學(xué)目標(biāo)

          根據(jù)教學(xué)大綱和學(xué)生已有的認(rèn)知基礎(chǔ),我將本節(jié)課的教學(xué)目標(biāo)確定如下:

          知識目標(biāo):經(jīng)歷圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程,學(xué)會點與圓的位置關(guān)系的判定方法。

          掌握圓的標(biāo)準(zhǔn)方程及其求法;能根據(jù)圓心、半徑寫出圓的標(biāo)準(zhǔn)方程。

          能力目標(biāo):體會用解析法研究幾何問題的方法,理解數(shù)形結(jié)合思想。

          情感目標(biāo):運用圓的相關(guān)知識解決實際問題,提高觀察問題、發(fā)現(xiàn)問題和解決問題的能力,以及學(xué)習(xí)數(shù)學(xué)的熱情和民族自豪感。

          3.教學(xué)重點、難點及關(guān)鍵

          我將本課的教學(xué)重點、難點確定為:

          ①重點:掌握圓的標(biāo)準(zhǔn)方程及其推導(dǎo)方法,

          ②難點:圓的標(biāo)準(zhǔn)方程的應(yīng)用。

          二、教學(xué)方法分析

          在教法上,主要采用研究性和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用提問啟發(fā)的形式,逐步讓學(xué)生進(jìn)行研究性學(xué)習(xí)。結(jié)合圓的定義自己推導(dǎo)圓的標(biāo)準(zhǔn)方程。

          讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,主動地去分析問題、討論問題、解決問題。例題安排由易至難,采用變式題形式,形變神不便,層層遞進(jìn),深入分析。在應(yīng)用問題的安排上,啟發(fā)討論的同時,體會我國古代勞動人民的智慧和才干,從而激發(fā)學(xué)生的民族自豪感。

          三、學(xué)法分析

          我所任教的班級是金融一年級,學(xué)生已具備了直線的相關(guān)知識。學(xué)生的基本運算過關(guān),可是主動思考問題能力較薄弱。因此本堂課我主要運用引導(dǎo)、啟發(fā)、情感暗示等隱性形式來影響學(xué)生,多提供機(jī)會讓學(xué)生去想、去做,給學(xué)生參與教學(xué)過程、發(fā)現(xiàn)問題、討論問題提供了很好的機(jī)會。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會學(xué)習(xí),學(xué)會探索問題的方法,培養(yǎng)學(xué)生的能力。

          四、教學(xué)程序

          1、創(chuàng)設(shè)情境,激發(fā)興趣。

          問題一:直線學(xué)習(xí)過程中已經(jīng)借助平面直角坐標(biāo)系體會用代數(shù)法研究幾何問題,圓如何用代數(shù)法研究?

          問題二:在我們現(xiàn)實生活中有許多蘊含圓方程的實例,比如趙州橋,它的圓方程是什么樣的?通過本堂課的學(xué)習(xí)我們就能得到答案。

          通過提出這兩個問題,打開學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時打下鋪墊,在我們生活中,有許多實例蘊含著圓方程,設(shè)計意圖:數(shù)學(xué)來源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強烈的求知欲,讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認(rèn)識了生活中的數(shù)學(xué),又大膽而自然地提出猜想。

          2、探索實踐,推導(dǎo)方程。

          讓學(xué)生觀察幾何畫板畫圓的過程,抽象得出圓的定義。讓學(xué)生總結(jié)出圓的定義并結(jié)合兩點間的距離公式,逐步推導(dǎo)出圓的標(biāo)準(zhǔn)方程。

          圓心是C(a,b),半徑是r,求圓的標(biāo)準(zhǔn)方程:

          注:當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:

          3、實踐應(yīng)用,鞏固提高。

          復(fù)習(xí):點P與圓:的位置關(guān)系(由點與圓心C(a,b)的距離判定)

          (1)點P在圓內(nèi),則|PC|<r

          (2)點P在圓上,則|PC|=r

          (3)點P在圓外,則|PC|>r

          設(shè)計意圖:從基本入手,熟悉圓的標(biāo)準(zhǔn)方程,以及點與圓位置關(guān)系等基本性質(zhì)。

          穿插課堂練習(xí),反復(fù)鞏固新知。

          1.口答下列各圓的標(biāo)準(zhǔn)方程

          (1)圓心在(8,-3),半徑為6 _______________________

          (2)圓心在(0, 2),半徑為 ________________________

         。3)圓心在原點,半徑為4 ________________________

          2.判斷下列方程是否表示圓,如果是,寫出圓心坐標(biāo)和半徑,并判斷原點

          (0,0)與圓的位置關(guān)系。

          設(shè)計意圖:第一題是直接給出圓心坐標(biāo)和半徑求圓的.標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

          設(shè)計意圖:3道變式例題,形變神不變。通過鞏固練習(xí),讓學(xué)生自己體會出本堂課的重點求圓標(biāo)準(zhǔn)方程的關(guān)鍵條件。

          例3如圖為著稱于世的趙州橋的示意圖,圓拱跨徑AB(橋孔寬)為37.0m,拱高OP=7.2m,如以AB為x軸,線段AB的垂直平分線為y軸,建立平面直角坐標(biāo)系,求趙州橋圓拱所在的圓的方程。

          設(shè)計意圖:與情境引入時相呼應(yīng),聯(lián)系到生活實例,使學(xué)生進(jìn)一步體會圓方程的應(yīng)用。同時趙州橋是中國古代勞動人民智慧的結(jié)晶,提升學(xué)生的民族自豪感。

          4、課堂小結(jié),回味無窮。

         。1)圓心為C(a,b),半徑為r的圓的標(biāo)準(zhǔn)方程為:

         。2)當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:

         。3)數(shù)形結(jié)合的思想方法

          5、回家作業(yè),課后鞏固。

          練習(xí)冊P7.習(xí)題7.3(1)/1、2、3、4

          6、課后思考,擴(kuò)展延伸。

          1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2.方程:

          7、板書設(shè)計

        《圓的標(biāo)準(zhǔn)方程》說課稿2

          (一)說教材

          1、教材結(jié)構(gòu)編排:

          本節(jié)課位于直線方程之后和圓的一般方程之前,學(xué)習(xí)直線方程為后邊學(xué)習(xí)圓的方程奠定了基礎(chǔ),而學(xué)好圓的標(biāo)準(zhǔn)方程是為了進(jìn)一步學(xué)習(xí)圓的一般方程和切線方程打好基礎(chǔ),因此在結(jié)構(gòu)上起承上啟下的作用。

          2、教學(xué)目標(biāo)

          知識目標(biāo):

         。1)掌握圓的標(biāo)準(zhǔn)方程,并能根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心坐標(biāo)和半徑、

          (2)已知圓心和半徑會寫出圓的標(biāo)準(zhǔn)方程、

          能力目標(biāo):

          (1)培養(yǎng)學(xué)生數(shù)形結(jié)合能力、

         。2)培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力

          情感目標(biāo):

          (1)培養(yǎng)學(xué)生主動探究知識,合作交流的意識。

         。2)在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生學(xué)習(xí)的興趣。

          3、教學(xué)重點

          (1)圓的標(biāo)準(zhǔn)方程

         。2)已知圓的標(biāo)準(zhǔn)方程會寫出圓的圓心和半徑

         。3)已知圓心坐標(biāo)和半徑會寫出圓的標(biāo)準(zhǔn)方程

          4、教學(xué)難點

         。1)圓的標(biāo)準(zhǔn)方程的推導(dǎo)

         。2)圓的標(biāo)準(zhǔn)方程的應(yīng)用

          (二)說教法

          本節(jié)課采用講練結(jié)合,啟發(fā)式教學(xué)

          (三)說學(xué)法

          1、 主動探究學(xué)習(xí)

          2、 小組合作學(xué)習(xí)

          (四)說教學(xué)過程

          1、導(dǎo)入

          通過鐘表的圖片讓學(xué)生了解鐘表的指針頭運行的軌跡是一個圓,第二個鐘表是讓學(xué)生了解圓是一系列的點來構(gòu)成的,第三個圖是抽象出圓是由動點運行的軌跡有此形成圓的定義。

          2、知識銜接

         。1)圓的定義,圓上的點具備的特征性質(zhì)

         。2)平面上兩點間的距離公式

          通過復(fù)習(xí)為后邊推導(dǎo)圓的標(biāo)準(zhǔn)方程奠定基礎(chǔ),降低難度。

          3、新課學(xué)習(xí)

          (1)推導(dǎo)圓的標(biāo)準(zhǔn)方程(化解難點)

          怎么推出圓的標(biāo)準(zhǔn)方程,為了降低難度,可以把圓看成一個動點,既然是動點,那他的坐標(biāo)是變化的,就用(x,y)表示,既然是圓上的點就應(yīng)具備圓的特征性質(zhì)即|CM|=r接下來就容易推出圓的標(biāo)準(zhǔn)方程。

         。2)圓的標(biāo)準(zhǔn)方程(突出重點)

          先分析它的.結(jié)構(gòu),圓心的橫縱坐標(biāo)及半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系。為了鞏固這個知識安排兩個練習(xí),練習(xí)一是已知圓心坐標(biāo)及半徑寫出圓的標(biāo)準(zhǔn)方程,練習(xí)二是已知圓的標(biāo)準(zhǔn)方程寫出圓的圓心坐標(biāo)和半徑

         。3)為了加強知識的應(yīng)用,我加了一道用圓的標(biāo)準(zhǔn)方程解決實際問題的例子。這道題也是有難度的,為了降低難度,我給學(xué)生建立坐標(biāo)系,讓學(xué)生寫出圓的標(biāo)準(zhǔn)方程,分組討論,最后得出結(jié)論。

          (4)小結(jié)本節(jié)的重點知識

         。5)根據(jù)所學(xué)為了加強鞏固,適當(dāng)?shù)牟贾米鳂I(yè)

          (五)說板書設(shè)計

          正中間是題目圓的標(biāo)準(zhǔn)方程,左邊是圓的標(biāo)準(zhǔn)方程,及確定圓的條件,右邊是例子及演板的地方,這樣設(shè)計的目的是醒目,大家一看就知道本節(jié)課的重要內(nèi)容。

        《圓的標(biāo)準(zhǔn)方程》說課稿3

          【一】教學(xué)背景分析

          1. 教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.

          2.學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的. 但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強.

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3.教學(xué)目標(biāo)

          (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

         、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

         、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題.

          (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

          ②加深對數(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

         、墼鰪妼W(xué)生用數(shù)學(xué)的意識.

          (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

         、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

          根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

          4. 教學(xué)重點與難點

          (1)重點: 圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

          (2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

          ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

          【二】教法學(xué)法分析

          1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

          2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程.

          下面我就對具體的教學(xué)過程和設(shè)計加以說明:

          【三】教學(xué)過程與設(shè)計

          整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

          創(chuàng)設(shè)情境 啟迪思維

          深入探究 獲得新知

          應(yīng)用舉例 鞏固提高

          反饋訓(xùn)練 形成方法

          小結(jié)反思 拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.

          首先:縱向敘述教學(xué)過程

          (一)創(chuàng)設(shè)情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

          通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

          通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié).

          (二)深入探究——獲得新知

          問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為幾的圓的方程?

          2.如果圓心在,半徑為xx時又如何呢?

          這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié).

          (三)應(yīng)用舉例——鞏固提高

          I.直接應(yīng)用 內(nèi)化新知

          問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:

          (1)圓心在原點,半徑為3;

          (2)經(jīng)過點,圓心在點

          2.寫出圓的圓心坐標(biāo)和半徑.

          我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

          II.靈活應(yīng)用 提升能力

          問題四

          1.求以點為圓心,并且和直線相切的圓的方程.

          2.求過點,圓心在直線上且與軸相切的圓的方程.

          3.已知圓的方程為,求過圓上一點的切線方程.你能歸納出具有一般性的結(jié)論嗎?已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

          我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.

          III.實際應(yīng)用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.

          (四)反饋訓(xùn)練——形成方法

          問題六

          1.求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

          2.求圓過點的切線方程.

          3.求圓過點的切線方程.

          接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的.圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

          (五)小結(jié)反思——拓展引申

          1.課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

         、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為;圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

         、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:

          2.分層作業(yè) (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.

          (B)思維拓展型作業(yè):

          試推導(dǎo)過圓上一點的切線方程.

          3.激發(fā)新疑

          問題七

          1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2.方程表示什么圖形?

          在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

          以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計:

          橫向闡述教學(xué)設(shè)計

          (一)突出重點 抓住關(guān)鍵 突破難點

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.

          第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。

          (二)學(xué)生主體 教師主導(dǎo) 探究主線

          本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

          (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

          以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

        《圓的標(biāo)準(zhǔn)方程》說課稿4

          一、教學(xué)背景分析

          1、教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

          2、學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強。

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3、教學(xué)目標(biāo)

          (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

         、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

         、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題。

          (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

          ③增強學(xué)生用數(shù)學(xué)的意識。

          (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

         、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

          根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

          4、教學(xué)重點與難點

          (1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

          (2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

         、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

          二、教法學(xué)法分析

          1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

          2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。

          下面我就對具體的教學(xué)過程和設(shè)計加以說明:

          三、教學(xué)過程與設(shè)計

          整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

          創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

          反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。

          首先:縱向敘述教學(xué)過程

          (一)創(chuàng)設(shè)情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

          通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

          通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。

          (二)深入探究——獲得新知

          問題二 1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

          2、如果圓心在,半徑為時又如何呢?

          這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。

          (三)應(yīng)用舉例——鞏固提高

          I、直接應(yīng)用 內(nèi)化新知

          問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:

          (1)圓心在原點,半徑為3;

          (2)經(jīng)過點,圓心在點。

          2、寫出圓的圓心坐標(biāo)和半徑。

          我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

          II、靈活應(yīng)用 提升能力

          問題四 1、求以點為圓心,并且和直線相切的圓的方程。

          2、求過點,圓心在直線上且與軸相切的圓的方程。

          3、已知圓的方程為,求過圓上一點的切線方程。

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

          我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

          III、實際應(yīng)用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。

          (四)反饋訓(xùn)練——形成方法

          問題六 1、求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

          2、求圓過點的切線方程。

          3、求圓過點的切線方程。

          接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

          (五)小結(jié)反思——拓展引申

          1、課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

          ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

         、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。

          2、分層作業(yè)

          (A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。

          3、激發(fā)新疑

          問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2、方程表示什么圖形?

          在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

          以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的'教學(xué)設(shè)計:

          橫向闡述教學(xué)設(shè)計

          (一)突出重點 抓住關(guān)鍵 突破難點

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

          第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。

          (二)學(xué)生主體 教師主導(dǎo) 探究主線

          本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

          (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

          以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

        《圓的標(biāo)準(zhǔn)方程》說課稿5

        尊敬的各位考官:

          大家好,我是X號考生,今天我說課的題目是《圓的標(biāo)準(zhǔn)方程》。

          對于本節(jié)課,我將以教什么、怎么教、為什么這么教為思路,從教材分析、學(xué)情分析、教學(xué)重難點等幾個方面加以闡述。

          一、說教材

          首先談一談我對教材的理解。本節(jié)課選自人教A版實驗版高中數(shù)學(xué)必修二,主要探究圓的標(biāo)準(zhǔn)方程。此前學(xué)生已經(jīng)學(xué)習(xí)了在平面直角坐標(biāo)系中用方程表示直線,起到良好的鋪墊作用。本節(jié)課為后續(xù)學(xué)習(xí)圓的一般方程及進(jìn)一步學(xué)習(xí)平面解析幾何打下基礎(chǔ)。

          二、說學(xué)情

          再來談?wù)剬W(xué)生的情況。高中生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。

          三、說教學(xué)目標(biāo)

          基于以上分析,我制定了如下三維教學(xué)目標(biāo):

          (一)知識與技能

          掌握圓的標(biāo)準(zhǔn)方程,能夠在給出基本條件的情況下求出圓的.標(biāo)準(zhǔn)方程。

         。ǘ┻^程與方法

          經(jīng)歷探究圓的標(biāo)準(zhǔn)方程的過程,提升邏輯推理、直觀想象與數(shù)學(xué)運算能力。

         。ㄈ┣楦、態(tài)度與價值觀

          獲得成功的體驗,增強學(xué)習(xí)數(shù)學(xué)的興趣與信心。

          四、說教學(xué)重難點

          在教學(xué)目標(biāo)的實現(xiàn)過程中,教學(xué)重點是圓的標(biāo)準(zhǔn)方程,教學(xué)難點是圓的標(biāo)準(zhǔn)方程的探究過程。

          五、說教法學(xué)法

          現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。根據(jù)這一教學(xué)理念,本節(jié)課我將采用自主探究為主,輔以教師講解、小組討論等教學(xué)方法,層層遞進(jìn)進(jìn)行展開。

          六、說教學(xué)過程

          下面重點談?wù)勎覍虒W(xué)過程的設(shè)計。

          (一)導(dǎo)入新課

          課堂伊始,為了鋪墊用方程表示平面圖形的思路,也為了幫助學(xué)生完善知識體系,我會帶領(lǐng)學(xué)生簡單回顧之前所學(xué)內(nèi)容——在平面直角坐標(biāo)系中用坐標(biāo)、用方程的方法表示一些點、直線,由確定直線的幾何要素推導(dǎo)出直線的方程。

          進(jìn)而提出能不能在平面直角坐標(biāo)系中表示其他圖形。用大屏幕展示一些圓形物品,請學(xué)生舉例更多圓形物品。然后提問:能否用方程的思想在平面直角坐標(biāo)系中表示圓?由此引出課題。

          (二)講解新知

        《圓的標(biāo)準(zhǔn)方程》說課稿6

          教材分析

          圓是學(xué)生在初中已初步了解了圓的知識及前面學(xué)習(xí)了直線方程的基礎(chǔ)上來進(jìn)一步學(xué)習(xí)《圓的標(biāo)準(zhǔn)方程》,它既是前面圓的知識的復(fù)習(xí)延伸,又是后繼學(xué)習(xí)圓與直線的位置關(guān)系奠定了基礎(chǔ)。因此,本節(jié)課在本章中起著承上啟下的重要作用。

          教學(xué)目標(biāo)

          1. 知識與技能:探索并掌握圓的標(biāo)準(zhǔn)方程,能根據(jù)方程寫出圓的坐標(biāo)和圓的半徑。

          2. 過程與方法:通過圓的標(biāo)準(zhǔn)方程的學(xué)習(xí),掌握求曲線方程的方法,領(lǐng)會數(shù)形結(jié)合的思想。

          3. 情感態(tài)度與價值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)成功的喜悅。

          教學(xué)重點難點

          以及措施

          教學(xué)重點:圓的標(biāo)準(zhǔn)方程理解及運用

          教學(xué)難點:根據(jù)不同條件,利用待定系數(shù)求圓的標(biāo)準(zhǔn)方程。

          根據(jù)教學(xué)內(nèi)容的特點及高一年級學(xué)生的年齡、認(rèn)知特征,緊緊抓住課堂知識的結(jié)構(gòu)關(guān)系,遵循“直觀認(rèn)知――操作體會――感悟知識特征――應(yīng)用知識”的認(rèn)知過程,設(shè)計出包括:觀察、操作、思考、交流等內(nèi)容的教學(xué)流程。并且充分利用現(xiàn)代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識,給學(xué)生獨立操作、合作交流的機(jī)會。學(xué)法上注重讓學(xué)生參與方程的推導(dǎo)過程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學(xué)生真正體驗知識的形成過程。

          學(xué)習(xí)者分析

          高一年級的學(xué)生從知識層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對數(shù)學(xué)問題有自己個人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數(shù)學(xué)應(yīng)用意識和語言表達(dá)的能力還有待加強。

          教法設(shè)計

          問題情境引入法 啟發(fā)式教學(xué)法 講授法

          學(xué)法指導(dǎo)

          自主學(xué)習(xí)法 討論交流法 練習(xí)鞏固法

          教學(xué)準(zhǔn)備

          ppt課件 導(dǎo)學(xué)案

          教學(xué)環(huán)節(jié)

          教學(xué)內(nèi)容

          教師活動

          學(xué)生活動

          設(shè)計意圖

          情景引入

          回顧復(fù)習(xí)

          (2分鐘)

          1.觀賞生活中有關(guān)圓的圖片

          2.回顧復(fù)習(xí)圓的定義,并觀看圓的生成flash動畫。

          提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?

          教師創(chuàng)設(shè)情景,引領(lǐng)學(xué)生感受圓。

          教師提出問題。引導(dǎo)學(xué)生思考,引出本節(jié)主旨。

          學(xué)生觀賞圓的圖片和動畫,思考如何表示圓的方程。

          生活中的圖片展示,調(diào)動學(xué)生學(xué)習(xí)的積極性,讓學(xué)生體會到園在日常生活中的廣泛應(yīng)用

          自主學(xué)習(xí)

          (5分鐘)

          1.介紹動點軌跡方程的求解步驟:

          (1)建系:在圖形中建立適當(dāng)?shù)淖鴺?biāo)系;

          (2)設(shè)點:用有序?qū)崝?shù)對(x,y)表示曲 線上任意一點M的坐標(biāo);

          (3)列式:用坐標(biāo)表示條件P(M)的方程 ;

          (4)化簡:對P(M)方程化簡到最簡形式;

          2.學(xué)生自主學(xué)習(xí)圓的方程推導(dǎo),并完成相應(yīng)學(xué)案內(nèi)容,

          教師介紹求軌跡方程的步驟后,引導(dǎo)學(xué)生自學(xué)圓的標(biāo)準(zhǔn)方程

          自主學(xué)習(xí)課本中圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程,并完成導(dǎo)學(xué)案的內(nèi)容,并當(dāng)堂展示。

          培養(yǎng)學(xué)生自主學(xué)習(xí),獲取知識的能力

          合作探究(10分鐘)

          1.根據(jù)圓的標(biāo)準(zhǔn)方程說明確定圓的方程的條件有哪些?

          2.點M(x0,y0)與圓(x-a)2+(y-b)2=r2的關(guān)系的判斷方法:

          (1)點在圓上

          (2)點在圓外

          (3)點在圓內(nèi)

          教師引導(dǎo)學(xué)生分組探討,從旁巡視指導(dǎo)學(xué)生在自學(xué)和探討中遇到的問題,并鼓勵學(xué)生以小組為單位展示探究成果。

          學(xué)生展開合作性的探討,并陳述自己的研究成果。

          通過合作探究和自我的展示,鼓勵學(xué)生合作學(xué)習(xí)的品質(zhì)

          當(dāng)堂訓(xùn)練(18分鐘)

          1.求下列圓的圓心坐標(biāo)和半徑

          C1: x2+y2=5

          C2: (x-3)2+y2=4

          C3: x2+(y+1)2=a2(a≠0)

          2. 以C(4,-6)為圓心,半徑等于3的圓的'標(biāo)準(zhǔn)方程

          3. 設(shè)圓(x-a)2+(y-b)2=r2

          則坐標(biāo)原點的位置是( )

          A.在圓外 B.在圓上

          C.在圓內(nèi) D.與a的取值有關(guān)

          4.寫出下列各圓的標(biāo)準(zhǔn)方程(1)圓心在原點,半徑等于5

          (2)經(jīng)過點P(5,1),圓心在點C(6,-2);

          (3)以A(2,5),B(0,-1)為直徑的圓.

          5.下列方程分別表示什么圖形

          (1) x2+y2=0

          (2) (x-1)2 =8-(y+2)2

          (3) 《圓的標(biāo)準(zhǔn)方程》教學(xué)設(shè)計-賈偉

          6.鞏固提升:已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程并作圖

          指導(dǎo)學(xué)生就不同條件下給出的圓心和半徑關(guān)系,求解圓的標(biāo)準(zhǔn)方程這兩個要素展開訓(xùn)練。

          學(xué)生自主開展訓(xùn)練,并糾正學(xué)習(xí)中所遇到的問題

          鞏固所學(xué)知識,并查缺補漏。

          回顧小結(jié)

          (1分鐘)

          1.你學(xué)到了哪些知識?

          2.你掌握了哪些技能?

          3.你體會到了哪些數(shù)學(xué)思想?

          采用提問的形式幫助學(xué)生回顧和分析本節(jié)所學(xué)。

          學(xué)生思考并從知識、技能和思想方法上回顧總結(jié)。

          培養(yǎng)學(xué)生歸納總結(jié)能力

          作業(yè)布置

          (1分鐘)

          課本87頁習(xí)題2-2

          A組的第1道題

          布置訓(xùn)練任務(wù)

          標(biāo)記并完成相應(yīng)的任務(wù)

          檢測學(xué)生掌握知識情況。

          教學(xué)反思

          本節(jié)教學(xué)主要遵循“回-導(dǎo)-學(xué)-展-講-練-結(jié)”的高效課堂教學(xué)模式,遵循學(xué)生學(xué)習(xí)的主體地位,鼓勵學(xué)生自主思考和探討。

          教學(xué)中要積極鼓勵學(xué)生多思考總結(jié),在判斷點與圓的位置關(guān)系中,要遵從學(xué)生個性化的發(fā)展思路,鼓勵學(xué)生創(chuàng)造性的解決問題。

        《圓的標(biāo)準(zhǔn)方程》說課稿7

          一、教學(xué)背景分析

          1、教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)、圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用、圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用、

          2、學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的、但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難、另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強、

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3、教學(xué)目標(biāo)

         。1)知識目標(biāo):

          ①掌握圓的標(biāo)準(zhǔn)方程;

         、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

         、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題、

          (2)能力目標(biāo):

         、龠M(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

         、墼鰪妼W(xué)生用數(shù)學(xué)的意識、

         。3)情感目標(biāo):

          ①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

         、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣、

          根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

          4、教學(xué)重點與難點

         。1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用、

         。2)難點:

         、贂鶕(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

          ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題、

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

          二、教法學(xué)法分析

          1、教法分析為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上、另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程、

          2、學(xué)法分析通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解、通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓、通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程、

          下面我就對具體的教學(xué)過程和設(shè)計加以說明:

          三、教學(xué)過程與設(shè)計

          整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

          創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高

          反饋訓(xùn)練形成方法小結(jié)反思拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖、

          首先:縱向敘述教學(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

          問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

          通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決、一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題、用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望、這樣獲取的知識,不但易于保持,而且易于遷移、

          通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)、

         。ǘ┥钊胩骄俊@得新知

          問題二1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

          2、如果圓心在,半徑為時又如何呢?

          這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程、然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究、我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法、

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)、

         。ㄈ⿷(yīng)用舉例——鞏固提高

          I、直接應(yīng)用內(nèi)化新知

          問題三

          1、寫出下列各圓的標(biāo)準(zhǔn)方程:

         。1)圓心在原點,半徑為3;

         。2)經(jīng)過點,圓心在點、

          2、寫出圓的圓心坐標(biāo)和半徑、

          我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備、

          II、靈活應(yīng)用提升能力

          問題四

          1、求以點為圓心,并且和直線相切的圓的方程、

          2、求過點,圓心在直線上且與軸相切的圓的方程、

          3、已知圓的方程為,求過圓上一點的切線方程、

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

          我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程、第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓、第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間、最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮、

          III、實際應(yīng)用回歸自然

          問題五

          如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m)

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識、

         。ㄋ模┓答佊(xùn)練——形成方法

          問題六

          1、求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程、

          2、求圓過點的切線方程、

          3、求圓過點的切線方程、

          接下來是第四環(huán)節(jié)——反饋訓(xùn)練、這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的`愿望與信心、另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果、

          (五)小結(jié)反思——拓展引申

          1、課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

         、賵A心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點時,半徑為r的圓的標(biāo)準(zhǔn)方程為:

          ②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:

          2、分層作業(yè)

         。ˋ)鞏固型作業(yè):教材P81—82:(習(xí)題7、6)1,2,4

         。˙)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程

          3、激發(fā)新疑

          問題七

          1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2、方程表示什么圖形?

          在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了、在知識的拓展中再次掀起學(xué)生探究的熱情、另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備、

          以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計:

          橫向闡述教學(xué)設(shè)計

         。ㄒ唬┩怀鲋攸c抓住關(guān)鍵突破難點

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點、

          第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心、最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五、這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破、

         。ǘ⿲W(xué)生主體教師主導(dǎo)探究主線

          本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終、從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的、另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)、

         。ㄈ┡囵B(yǎng)思維提升能力激勵創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力、在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行、

          以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變、最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

        【《圓的標(biāo)準(zhǔn)方程》說課稿】相關(guān)文章:

        《圓的標(biāo)準(zhǔn)方程》說課稿11-20

        橢圓的標(biāo)準(zhǔn)方程的求法說課稿01-15

        《雙曲線及其標(biāo)準(zhǔn)方程》說課稿12-29

        《方程》說課稿01-02

        方程的意義說課稿03-07

        圓與圓的位置關(guān)系說課稿01-11

        圓的周長說課稿03-10

        圓的面積說課稿12-19

        《圓的周長》說課稿02-20

        精品人妻中文字幕在线视频,久久久噜噜噜久久中文福利,精品中文无码一区二区区,国产精品一区二区久久国产抖音